Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(16): 12738-12744, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38618908

RESUMO

Recently, hydrogen boride (HB) with a pseudo-two-dimensional sheet structure was successfully synthesized, and it is theoretically predicted to have high potential as a negative electrode material for alkali metal ion batteries, making it a promising new candidate. This study represents the first experimental examination of the negative electrode properties of HB. HB was synthesized via cation exchange from MgB2. The confirmation of HB synthesis was achieved through various spectroscopic experiments, including synchrotron radiation X-ray diffraction and X-ray photoelectron spectroscopy, in addition to direct observation using transmission electron microscopy. The HB electrode was prepared by mixing the HB powder sample with conductive additive carbon black and a polymer binder. A test cell was assembled with the HB electrode as the working electrode, and lithium metal as the counter and reference electrodes, and its battery electrode properties were evaluated. Although reversible charge-discharge curves with good reversibility were observed, the reversible capacity was 100 ± 20 mA h g-1 which is significantly smaller than the theoretical predictions. Nitrogen gas adsorption experiments were performed on the HB powder sample to determine the specific surface area indicating that the HB sheets were stacked together. It is plausible to consider that this stacking structure led to a reduced lithium-ion storage capacity compared to the theoretical predictions.

2.
Biochem Biophys Res Commun ; 690: 149272, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37992523

RESUMO

Cardiomyocytes (CMs) have little regenerative capacity. After myocardial infarction (MI), scar formation and myocardial remodeling proceed in the infarct and non-infarct areas, respectively, leading to heart failure (HF). Prolonged activation of cardiac fibroblasts (CFs) and inflammatory cells may contribute to this process; however, therapies targeting these cell types remain lacking. Cardiac reprogramming converts CFs into induced CMs, reduces fibrosis, and improves cardiac function in chronic MI through the overexpression of Mef2c/Gata4/Tbx5/Hand2 (MGTH). However, whether cardiac reprogramming reduces inflammation in infarcted hearts remains unclear. Moreover, the mechanism through which MGTH overexpression in CFs affects inflammatory cells remains unknown. Here, we showed that inflammation persists in the myocardium until three months after MI, which can be reversed with cardiac reprogramming. Single-cell RNA sequencing demonstrated that CFs expressed pro-inflammatory genes and exhibited strong intercellular communication with inflammatory cells, including macrophages, in chronic MI. Cardiac reprogramming suppressed the inflammatory profiles of CFs and reduced the relative ratios and pro-inflammatory signatures of cardiac macrophages. Moreover, fluorescence-activated cell sorting analysis (FACS) revealed that cardiac reprogramming reduced the number of chemokine receptor type 2 (CCR2)-positive inflammatory macrophages in the non-infarct areas in chronic MI, thereby restoring myocardial remodeling. Thus, cardiac reprogramming reduced the number of inflammatory macrophages to exacerbate cardiac function after MI.


Assuntos
Infarto do Miocárdio , Humanos , Infarto do Miocárdio/metabolismo , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Macrófagos/metabolismo , Inflamação/metabolismo , Fibroblastos/metabolismo
3.
Curr Biol ; 33(22): R1186-R1188, 2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37989094

RESUMO

It is known that bacteria reduce their ribosome numbers during nutrient starvation. New research shows that this regulation leads to the formation of two subpopulations with distinct ribosomal RNA levels. The distinct levels affect the growth recovery when nutrients become available, suggesting a possible bet-hedging strategy.


Assuntos
Evolução Biológica , Inanição , Humanos , Bactérias/genética , Ribossomos
4.
Arterioscler Thromb Vasc Biol ; 43(9): 1668-1683, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37534464

RESUMO

BACKGROUND: The mechanisms underlying pulmonary hypertension (PH) remain largely unknown; further, why advanced vascular remodeling preferentially occurs in arterioles is yet to be answered. VEGF (vascular endothelial growth factor) regulates angiogenesis through Flk1 (fetal liver kinase 1) and Flt1 (fms-like tyrosine kinase 1) on endothelial cells (ECs), which may be related to PH pathogenesis. However, spatiotemporal expression patterns of Flk1 and Flt1 in the pulmonary vascular system and the role of endothelial Flk1 in PH development remain poorly understood. METHODS: We analyzed multiple reporter mice, including Flk1-GFP (green fluorescent protein) bacterial artificial chromosome transgenic (Tg), Flt1-DsRed bacterial artificial chromosome Tg, and Flk1-GFP/Flt1-DsRed double Tg mice, to determine the spatiotemporal expression of Flk1 and Flt1 in hypoxia-induced PH. We also used Cdh5CreERT2/Flk1f/f/Tomato (Flk1-KO [knockout]) mice to induce EC-specific Flk1 deletion and lineage tracing in chronic hypoxia. RESULTS: Flk1 was specifically expressed in the ECs of small pulmonary vessels, including arterioles. Conversely, Flt1 was more broadly expressed in the ECs of large- to small-sized vessels in adult mouse lungs. Intriguingly, Flk1+ ECs were transiently increased in hypoxia with proliferation, whereas Flt1 expression was unchanged. Flk1-KO mice did not exhibit pulmonary vascular remodeling nor PH in normoxia; however, the arteriolar ECs changed to a cuboidal shape with protrusion. In hypoxia, Flk1 deletion exacerbated EC dysfunction and reduced their number via apoptosis. Additionally, Flk1 deletion promoted medial thickening and neointimal formation in arterioles and worsened PH. Mechanistically, lineage tracing revealed that neointimal cells were derived from Flk1-KO ECs. Moreover, RNA sequencing in pulmonary ECs demonstrated that Flk1 deletion and hypoxia synergistically activated multiple pathways, including cell cycle, senescence/apoptosis, and cytokine/growth factor, concomitant with suppression of cell adhesion and angiogenesis, to promote vascular remodeling. CONCLUSIONS: Flk1 and Flt1 were differentially expressed in pulmonary ECs. Flk1 deficiency and hypoxia jointly dysregulated arteriolar ECs to promote vascular remodeling. Thus, dysfunction of Flk1+ ECs may contribute to the pathogenesis of advanced vascular remodeling in pulmonary arterioles.


Assuntos
Hipertensão Pulmonar , Remodelação Vascular , Animais , Camundongos , Células Endoteliais/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/metabolismo , Hipóxia/complicações , Hipóxia/genética , Hipóxia/metabolismo , Camundongos Knockout , Camundongos Transgênicos , Fator A de Crescimento do Endotélio Vascular/metabolismo
5.
Stem Cell Reports ; 18(6): 1274-1283, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37315521

RESUMO

Cardiac transcription factors (TFs) directly reprogram fibroblasts into induced cardiomyocytes (iCMs), where MEF2C acts as a pioneer factor with GATA4 and TBX5 (GT). However, the generation of functional and mature iCMs is inefficient, and the molecular mechanisms underlying this process remain largely unknown. Here, we found that the overexpression of transcriptionally activated MEF2C via fusion of the powerful MYOD transactivation domain combined with GT increased the generation of beating iCMs by 30-fold. Activated MEF2C with GT generated iCMs that were transcriptionally, structurally, and functionally more mature than those generated by native MEF2C with GT. Mechanistically, activated MEF2C recruited p300 and multiple cardiogenic TFs to cardiac loci to induce chromatin remodeling. In contrast, p300 inhibition suppressed cardiac gene expression, inhibited iCM maturation, and decreased the beating iCM numbers. Splicing isoforms of MEF2C with similar transcriptional activities did not promote functional iCM generation. Thus, MEF2C/p300-mediated epigenetic remodeling promotes iCM maturation.


Assuntos
Montagem e Desmontagem da Cromatina , Fatores de Transcrição MEF2 , Miócitos Cardíacos , Fatores de Transcrição de p300-CBP , Epigênese Genética , Epigenômica , Fibroblastos , Fatores de Transcrição MEF2/genética , Fatores de Transcrição de p300-CBP/genética
6.
Cancer Diagn Progn ; 3(3): 377-382, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37168958

RESUMO

BACKGROUND/AIM: Pemetrexed (PEM) and bevacizumab (BEV) are commonly used in combination as second or subsequent line regimens and maintenance therapy after platinum + PEM + BEV therapy for advanced non-small cell lung cancer (NSCLC). Median progression-free survival (PFS) for PEM + BEV has been reported to be less than six months in both clinical trials and clinical practice, but in clinical practice, we found that some patients demonstrate long-term PFS. Furthermore, there is a paucity of clinical practice data on whether long-term administration of PEM + BEV causes renal dysfunction. This study aimed to clarify these aspects in clinical practice. PATIENTS AND METHODS: A retrospective review of patients with advanced NSCLC treated with PEM + BEV between September 2011 and June 2022 at four hospitals was conducted. Long-term PFS in PEM + BEV therapy was defined as ≥12 months. RESULTS: During the study period, 109 patients received PEM + BEV treatment. Of them, 42 (38.5%) achieved long-term PFS ≥12 months. No significant differences in patient characteristics were found between patients with PFS ≥12 months and <12 months, except for 'relapse after resection'. Univariate and multivariate analysis showed that the favorable factor for PFS was 'relapse after resection'. With regard to influence on renal function of PEM + BEV therapy, no significant difference was found before and after PEM+BEV therapy between these two groups. CONCLUSION: NSCLC patients commonly achieved long-term PFS with PEM + BEV therapy with no observed effects on renal function.

7.
Commun Biol ; 6(1): 223, 2023 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-36841892

RESUMO

Bioactive small-molecule inhibitors represent a treasure chest for future drugs. In vitro high-throughput screening is a common approach to identify the small-molecule inhibitors that bind tightly to purified targets. Here, we investigate the inhibitor-target binding/unbinding kinetics in E. coli cells using a benzimidazole-derivative DNA inhibitor as a model system. We find that its unbinding rate is not constant but depends on cell growth rate. This dependence is mediated by the cellular activity, forming a feedback loop with the inhibitor's activity. In accordance with this feedback, we find cell-to-cell heterogeneity in inhibitor-target interaction, leading to co-existence of two distinct subpopulations: actively growing cells that dissociate the inhibitors from the targets and non-growing cells that do not. We find similar heterogeneity for other clinical DNA inhibitors. Our studies reveal a mechanism that couples inhibitor-target kinetics to cell physiology and demonstrate the significant effect of this coupling on drug efficacy.


Assuntos
DNA , Escherichia coli , Escherichia coli/metabolismo , Cinética , DNA/metabolismo
8.
Int J Mol Sci ; 24(2)2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36675051

RESUMO

The bacterial heat-shock response is regulated by the alternative sigma factor, σ32 (RpoH), which responds to misfolded protein stress and directs the RNA polymerase to the promoters for genes required for protein refolding or degradation. In P. aeruginosa, RpoH is essential for viability under laboratory growth conditions. Here, we used a transcriptomics approach to identify the genes of the RpoH regulon, including RpoH-regulated genes that are essential for P. aeruginosa. We placed the rpoH gene under control of the arabinose-inducible PBAD promoter, then deleted the chromosomal rpoH allele. This allowed transcriptomic analysis of the RpoH (σ32) regulon following a short up-shift in the cellular concentration of RpoH by arabinose addition, in the absence of a sudden change in temperature. The P. aeruginosa ∆rpoH (PBAD-rpoH) strain grew in the absence of arabinose, indicating that some rpoH expression occurred without arabinose induction. When arabinose was added, the rpoH mRNA abundance of P. aeruginosa ∆rpoH (PBAD-rpoH) measured by RT-qPCR increased five-fold within 15 min of arabinose addition. Transcriptome results showed that P. aeruginosa genes required for protein repair or degradation are induced by increased RpoH levels, and that many genes essential for P. aeruginosa growth are induced by RpoH. Other stress response genes induced by RpoH are involved in damaged nucleic acid repair and in amino acid metabolism. Annotation of the hypothetical proteins under RpoH control included proteins that may play a role in antibiotic resistances and in non-ribosomal peptide synthesis. Phenotypic analysis of P. aeruginosa ∆rpoH (PBAD-rpoH) showed that it is impaired in its ability to survive during starvation compared to the wild-type strain. P. aeruginosa ∆rpoH (PBAD-rpoH) also had increased sensitivity to aminoglycoside antibiotics, but not to other classes of antibiotics, whether cultured planktonically or in biofilms. The enhanced aminoglycoside sensitivity of the mutant strain may be due to indirect effects, such as the build-up of toxic misfolded proteins, or to the direct effect of genes, such as aminoglycoside acetyl transferases, that are regulated by RpoH. Overall, the results demonstrate that RpoH regulates genes that are essential for viability of P. aeruginosa, that it protects P. aeruginosa from damage from aminoglycoside antibiotics, and that it is required for survival during nutrient-limiting conditions.


Assuntos
Pseudomonas aeruginosa , Regulon , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Proteínas de Choque Térmico/metabolismo , Arabinose , Fator sigma/genética , Fator sigma/metabolismo , Aminoglicosídeos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Transcrição Gênica
9.
Circulation ; 147(3): 223-238, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36503256

RESUMO

BACKGROUND: Because adult cardiomyocytes have little regenerative capacity, resident cardiac fibroblasts (CFs) synthesize extracellular matrix after myocardial infarction (MI) to form fibrosis, leading to cardiac dysfunction and heart failure. Therapies that can regenerate the myocardium and reverse fibrosis in chronic MI are lacking. The overexpression of cardiac transcription factors, including Mef2c/Gata4/Tbx5/Hand2 (MGTH), can directly reprogram CFs into induced cardiomyocytes (iCMs) and improve cardiac function under acute MI. However, the ability of in vivo cardiac reprogramming to repair chronic MI with established scars is undetermined. METHODS: We generated a novel Tcf21iCre/reporter/MGTH2A transgenic mouse system in which tamoxifen treatment could induce both MGTH and reporter expression in the resident CFs for cardiac reprogramming and fibroblast lineage tracing. We first tested the efficacy of this transgenic system in vitro and in vivo for acute MI. Next, we analyzed in vivo cardiac reprogramming and fusion events under chronic MI using Tcf21iCre/Tomato/MGTH2A and Tcf21iCre/mTmG/MGTH2A mice, respectively. Microarray and single-cell RNA sequencing were performed to determine the mechanism of cardiac repair by in vivo reprogramming. RESULTS: We confirmed the efficacy of transgenic in vitro and in vivo cardiac reprogramming for acute MI. In chronic MI, in vivo cardiac reprogramming converted ≈2% of resident CFs into iCMs, in which a majority of iCMs were generated by means of bona fide cardiac reprogramming rather than by fusion with cardiomyocytes. Cardiac reprogramming significantly improved myocardial contraction and reduced fibrosis in chronic MI. Microarray analyses revealed that the overexpression of MGTH activated cardiac program and concomitantly suppressed fibroblast and inflammatory signatures in chronic MI. Single-cell RNA sequencing demonstrated that resident CFs consisted of 7 subclusters, in which the profibrotic CF population increased under chronic MI. Cardiac reprogramming suppressed fibroblastic gene expression in chronic MI by means of conversion of profibrotic CFs to a quiescent antifibrotic state. MGTH overexpression induced antifibrotic effects partly by suppression of Meox1, a central regulator of fibroblast activation. CONCLUSIONS: These results demonstrate that cardiac reprogramming could repair chronic MI by means of myocardial regeneration and reduction of fibrosis. These findings present opportunities for the development of new therapies for chronic MI and heart failure.


Assuntos
Insuficiência Cardíaca , Infarto do Miocárdio , Camundongos , Animais , Miócitos Cardíacos/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fibrose , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/metabolismo , Fibroblastos/metabolismo , Reprogramação Celular
10.
RSC Adv ; 12(33): 21318-21331, 2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35975049

RESUMO

With the increasing importance of power storage devices, demand for the development of supercapacitors possessing both rapid reversible chargeability and high energy density is accelerating. Here we propose a simple process for the room temperature fabrication of pseudocapacitor electrodes consisting of a faradaic redox reaction layer on a metallic electrode with an enhanced surface area. As a model metallic electrode, an Au foil was irradiated with Ar+ ions with a simultaneous supply of C and Ni at room temperature, resulting in fine metallic Ni nanoparticles dispersed in the carbon matrix with local graphitization on the ion-induced roughened Au surface. A carbon layer including fine Ni nanoparticles acted as an excellent faradaic redox reaction layer and the roughened surface contributed to an increase in surface area. The fabricated electrode, which included only 14 µg cm-2 of Ni, showed a stored charge ability three times as large as that of the bulky Ni foil. Thus, it is believed that a carbon layer including Ni nanoparticles fabricated on the charge collective electrode with an ion-irradiation method is promising for the development of supercapacitors from the viewpoints of the reduced use of rare metal and excellent supercapacitor performance.

11.
Curr Opin Microbiol ; 63: 104-108, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34325154

RESUMO

The effectiveness of antibiotics against bacterial infections has been declining due to the emergence of resistance. Precisely understanding the response of bacteria to antibiotics is critical to maximizing antibiotic-induced bacterial eradication while minimizing the emergence of antibiotic resistance. Cell-to-cell heterogeneity in antibiotic susceptibility is observed across various bacterial species for a wide range of antibiotics. Heterogeneity in antibiotic susceptibility is not always due to the genetic differences. Rather, it can be caused by non-genetic mechanisms such as stochastic gene expression and biased partitioning upon cell division. Heterogeneous susceptibility leads to the stochastic growth and death of individual cells and stochastic fluctuations in population size. These fluctuations have important implications for the eradication of bacterial populations and the emergence of genotypic resistance.


Assuntos
Antibacterianos , Infecções Bacterianas , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bactérias/genética , Infecções Bacterianas/tratamento farmacológico , Evolução Biológica , Divisão Celular , Farmacorresistência Bacteriana/genética , Humanos
13.
Biochem Biophys Res Commun ; 560: 87-92, 2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-33984769

RESUMO

Adult hearts have limited regenerative capacity. Hence, after acute myocardial infarction (MI), dead myocardial tissues are digested by immune cells and replaced by fibrosis, leading to ventricular remodeling and heart failure at the chronic stage. Direct reprogramming of the cardiac fibroblasts (CFs) into induced cardiomyocytes (iCMs) with cardiac transcription factors, including Gata4, Mef2c, and Tbx5 (GMT), may have significant potential for cardiac repair. Sendai virus (SeV) vectors expressing GMT have been reported to reprogram the mouse cardiac fibroblasts into iCMs without any risk of insertional mutagenesis. In vivo reprogramming improved the cardiac function after acute MI in immunodeficient mice. However, it is unknown whether the newly generated iCMs could exist in infarct hearts for a prolonged period and SeV-GMT can improve cardiac function after MI at the chronic stage in immunocompetent mice. Here, we show that SeV vectors efficiently infect CFs in vivo and reprogram them into iCMs, which existed for at least four weeks after MI, in fibroblast-linage tracing mice. Moreover, SeV-GMT improved cardiac function and reduced fibrosis and collagen I expression at 12 weeks after MI in immunocompetent mice. Thus, direct cardiac reprogramming with SeV vectors could be a promising therapy for MI.


Assuntos
Reprogramação Celular , Vetores Genéticos , Infarto do Miocárdio/terapia , Vírus Sendai/genética , Animais , Doença Crônica , Colágeno Tipo I/metabolismo , Fibroblastos , Fibrose , Masculino , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Miocárdio/citologia , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Fatores de Transcrição/genética
14.
Stem Cell Reports ; 15(3): 612-628, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32857980

RESUMO

Direct cardiac reprogramming holds great potential for regenerative medicine. However, it remains inefficient, and induced cardiomyocytes (iCMs) generated in vitro are less mature than those in vivo, suggesting that undefined extrinsic factors may regulate cardiac reprogramming. Previous in vitro studies mainly used hard polystyrene dishes, yet the effect of substrate rigidity on cardiac reprogramming remains unclear. Thus, we developed a Matrigel-based hydrogel culture system to determine the roles of matrix stiffness and mechanotransduction in cardiac reprogramming. We found that soft matrix comparable with native myocardium promoted the efficiency and quality of cardiac reprogramming. Mechanistically, soft matrix enhanced cardiac reprogramming via inhibition of integrin, Rho/ROCK, actomyosin, and YAP/TAZ signaling and suppression of fibroblast programs, which were activated on rigid substrates. Soft substrate further enhanced cardiac reprogramming with Sendai virus vectors via YAP/TAZ suppression, increasing the reprogramming efficiency up to ∼15%. Thus, mechanotransduction could provide new targets for improving cardiac reprogramming.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Reprogramação Celular , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Actomiosina/metabolismo , Animais , Vetores Genéticos/metabolismo , Integrinas/metabolismo , Camundongos Transgênicos , Miocárdio/citologia , Miócitos Cardíacos/citologia , Miosina Tipo II/metabolismo , Vírus Sendai/genética , Transdução de Sinais , Proteínas de Sinalização YAP , Proteínas rho de Ligação ao GTP/metabolismo , Quinases Associadas a rho/metabolismo
15.
BMC Pulm Med ; 20(1): 4, 2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-31914988

RESUMO

BACKGROUND: Marfan Syndrome (MFS) is a heritable connective tissue disorder with a high degree of clinical variability including respiratory diseases; a rare case of MFS with massive intrathoracic bleeding has been reported recently. CASE PRESENTATION: A 32-year-old man who had been diagnosed with MFS underwent a Bentall operation with artificial valve replacement for aortic dissection and regurgitation of an aortic valve in 2012. Warfarin was started postoperatively, and the dosage was gradually increased until 2017, when the patient was transported to our hospital due to sudden massive haemoptysis. Computed tomography (CT) with a maximum intensity projection (MIP) revealed several giant pulmonary cysts with fluid levels in the apex of the right lung with an abnormal vessel from the right subclavian artery. Transcatheter arterial embolization was performed with angiography and haemostasis was achieved, which suggested that the bleeding vessel was the lateral thoracic artery (LTA) branch. CT taken before the incident indicated thickening of the cystic wall adjacent to the thorax; therefore, it was postulated that the bleeding originated from fragile anastomoses between the LTA and pulmonary or bronchial arteries. It appears that the vessels exhibited inflammation that began postoperatively, which extended to the cysts. CONCLUSION: We experienced a case of MFS with massive haemoptysis from the right LTA. We have to be aware of the possibility that massive haemoptysis could be induced in MFS with inflamed pulmonary cysts.


Assuntos
Hemoptise/etiologia , Síndrome de Marfan/complicações , Artérias Torácicas/patologia , Adulto , Angiografia , Embolização Terapêutica , Hemoptise/terapia , Humanos , Pulmão/patologia , Masculino , Tomografia Computadorizada por Raios X , Resultado do Tratamento
16.
Front Microbiol ; 10: 2112, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31608020

RESUMO

The physiological heterogeneity of cells within a microbial population imparts resilience to stresses such as antimicrobial treatments and nutrient limitation. This resilience is partially due to a subpopulation of cells that can survive such stresses and regenerate the community. Microfluidic approaches now provide a means to study microbial physiology and bacterial heterogeneity at the single cell level, improving our ability to isolate and examine these subpopulations. Drop-based microfluidics provides a high-throughput approach to study individual cell physiology within bacterial populations. Using this approach, single cells are isolated from the population and encapsulated in growth medium dispersed in oil using a 15 µm diameter drop making microfluidic device. The drops are arranged as a packed monolayer inside a polydimethylsiloxane (PDMS) microfluidic device. Growth of thousands of individual cells in identical microenvironments can then be imaged using confocal laser scanning microscopy (CLSM). A challenge for this approach has been the maintenance of drop stability during extended time-lapse imaging. In particular, the drops do not maintain their volume over time during incubation in PDMS devices, due to fluid transport into the porous PDMS surroundings. Here, we present a strategy for PDMS device preparation that stabilizes drop position and volume within a drop array on a microfluidic chip for over 20 h. The stability of water-in-oil drops is maintained by soaking the device in a reservoir containing both water and oil in thermodynamic equilibrium. This ensures that phase equilibrium of the drop emulsion fluids within the porous PDMS material is maintained during drop incubation and imaging. We demonstrate the utility of this approach, which we label DropSOAC (Drop Stabilization On A Chip), for time-lapse studies of bacterial growth. We characterize growth of Pseudomonas aeruginosa and its Δhpf mutant derivative during resuscitation and growth following starvation. We demonstrate that growth rate and lag time heterogeneity of hundreds of individual bacterial cells can be determined starting from single isolated cells. The results show that the DropSOAC capsule provides a high-throughput approach toward studies of microbial physiology at the single cell level, and can be used to characterize physiological differences of cells from within a larger population.

17.
BMC Pulm Med ; 19(1): 167, 2019 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-31477076

RESUMO

BACKGROUND: Pulmonary hypertension (PH) is traditionally defined as a resting mean pulmonary artery pressure (mPAP) of ≥25 mmHg, while mPAP in the range of 21 to 24 mmHg is recognized as "borderline PH." Interstitial lung disease (ILD) is complicated by the development of PH, which is known to be linked with exercise intolerance and a poor prognosis. Even though it has recently been recommended that PH is redefined as a mPAP of > 20 mmHg, little is known about the clinical significance of borderline PH in ILD. We evaluated whether borderline PH has an impact on the exercise capacity, risk of acute exacerbation (AE), and mortality in patients with ILD. METHODS: A total of 80 patients with ILD who underwent right heart catheterization (RHC) between November 2013 and October 2016 were included. The patients were divided into 3 groups according to the mPAP values: mPAP ≤20 mmHg (No-PH group; n = 56), 20 < mPAP < 25 mmHg (Bo-PH group; n = 18), and mPAP ≥25 mmHg (PH group; n = 6). The demographic, hemodynamic, spirometric, and 6-min walk test (6MWT) data of the patients were collected. In addition, the 1-year incidence of AEs and 1-year survival of the patients after the initial RHC were also evaluated. RESULTS: There were no significant differences among the 3 groups in the mean age, pulmonary function parameters or the PaO2, however, 6-min walk distance was significantly lower in both the Bo-PH and PH groups (p < 0.001 for both) as compared to the No-PH group. The results of the Kaplan-Meier analysis revealed that while there was no significant difference in the 1-year survival rate among the three groups, the 1-year incidence of AEs was significantly higher in both the Bo-PH and PH groups (p < 0.001, p = 0.023, respectively) as compared to the No-PH group. CONCLUSIONS: The current study suggested that borderline PH may be associated with poorer exercise tolerance and an increased risk of AEs in patients with ILD. Therefore, the physicians should pay close attention to the presence of even mild elevation of the mPAP at the initial evaluation in patients with ILD.


Assuntos
Tolerância ao Exercício , Hemodinâmica , Hipertensão Pulmonar/fisiopatologia , Doenças Pulmonares Intersticiais/fisiopatologia , Artéria Pulmonar/fisiopatologia , Idoso , Idoso de 80 Anos ou mais , Cateterismo Cardíaco , Feminino , Humanos , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Teste de Caminhada
18.
Multidiscip Respir Med ; 14: 15, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31011423

RESUMO

BACKGROUND: Excessive inhalation of aluminium powder occasionally results in upper lobe predominant lung fibrosis, which is similar to idiopathic pleuroparenchymal fibroelastosis (IPPFE) and has been suggested to be secondary PPFE. CASE PRESENTATION: A 67-year-old man who had worked in an aluminum-processing factory for 50 years visited our hospital complaining of exertional dyspnea. Chest computed tomography (CT) showed bilateral dense sub-pleural consolidation in the upper and middle lung fields, which was consistent with IPPFE; however, the possibility of secondary PPFE associated with aluminosis was not ruled out. Considering the patient's critical condition, trans-bronchial lung biopsy (TBLB) rather than surgical lung biopsy was performed, with elemental analysis of the biopsied specimen. Unfortunately, the specimen obtained by TBLB did not contain alveolar tissue; therefore, pathological diagnosis of PPFE was not possible. However, radiographic findings were highly suggestive of PPFE. On elemental analysis, excessive amounts of aluminum were detected in the bronchiolar walls, establishing a diagnosis of airway aluminosis with likely secondary PPFE resulting from aluminium exposure. CONCLUSIONS: TBLB with elemental analysis might be useful in differentiating idiopathic PPFE from secondary causes in dust inhalation related disease, such as aluminosis. This case indicated that inhalation of aluminium might cause secondary PPFE, with attention needing to be paid to avoid further exposure.

19.
Mol Microbiol ; 110(2): 161-175, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29885070

RESUMO

Bacterial biofilms contain subpopulations of cells that are dormant and highly tolerant to antibiotics. While dormant, the bacteria must maintain the integrity of macromolecules required for resuscitation. Previously, we showed that hibernation promoting factor (HPF) is essential for protecting Pseudomonas aeruginosa from ribosomal loss during dormancy. In this study, we mapped the genetic components required for hpf expression. Using 5'-RACE and fluorescent protein reporter fusions, we show that hpf is expressed as part of the rpoN operon, but that hpf also has a second promoter (Phpf ) within the rpoN gene. Phpf is active when the cells enter stationary phase, and expression from Phpf is modulated, but not eliminated, in mutant strains impaired in stationary phase transition (ΔdksA2, ΔrpoS and ΔrelA/ΔspoT mutants). The results of reporter gene studies and mRNA folding predictions indicated that the 5' end of the hpf mRNA may also influence hpf expression. Mutations that opened or that stabilized the mRNA hairpin loop structures strongly influenced the amount of HPF produced. The results demonstrate that hpf is expressed independently of rpoN, and that hpf regulation includes both transcriptional and post-transcriptional processes, allowing the cells to produce sufficient HPF during stationary phase to maintain viability while dormant.


Assuntos
Biofilmes/crescimento & desenvolvimento , DNA Bacteriano/genética , Regulação Bacteriana da Expressão Gênica/fisiologia , Pseudomonas aeruginosa/fisiologia , Proteínas Ribossômicas/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Corantes Fluorescentes/química , Corantes Fluorescentes/metabolismo , Técnicas de Inativação de Genes , Mutação , Óperon , Regiões Promotoras Genéticas , Pseudomonas aeruginosa/genética , RNA Mensageiro/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Ribossômicas/química , Proteínas Ribossômicas/genética , Ribossomos/metabolismo
20.
Proc Natl Acad Sci U S A ; 114(12): 3204-3209, 2017 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-28270601

RESUMO

Pseudomonas aeruginosa biofilm infections are difficult to treat with antibiotic therapy in part because the biofilms contain subpopulations of dormant antibiotic-tolerant cells. The dormant cells can repopulate the biofilms following alleviation of antibiotic treatments. While dormant, the bacteria must maintain cellular integrity, including ribosome abundance, to reinitiate the de novo protein synthesis required for resuscitation. Here, we demonstrate that the P. aeruginosa gene PA4463 [hibernation promoting factor (HPF)], but not the ribosome modulation factor (PA3049), is required for ribosomal RNA preservation during prolonged nutrient starvation conditions. Single-cell-level studies using fluorescence in situ hybridization (FISH) and growth in microfluidic drops demonstrate that, in the absence of hpf, the rRNA abundances of starved cells decrease to levels that cause them to lose their ability to resuscitate from starvation, leaving intact nondividing cells. P. aeruginosa defective in the stringent response also had reduced ability to resuscitate from dormancy. However, FISH analysis of the starved stringent response mutant showed a bimodal response where the individual cells contained either abundant or low ribosome content, compared with the wild-type strain. The results indicate that ribosome maintenance is key for maintaining the ability of P. aeruginosa to resuscitate from starvation-induced dormancy and that HPF is the major factor associated with P. aeruginosa ribosome preservation.


Assuntos
Hibernação , Pseudomonas aeruginosa/fisiologia , Proteínas Ribossômicas/metabolismo , Ribossomos/metabolismo , Metabolismo Energético , Regulação Bacteriana da Expressão Gênica , RNA Ribossômico/genética , RNA Ribossômico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...